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Resonance splitting effect in semiconductor superlattices
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Abstract. The resonance splitting in finite semiconductor superlattices which consist of a number of electric
barriers is investigated. It is found that (n− 1)-fold splitting for n-barrier tunneling obtained in periodic
superlattices of identical barriers no longer holds for superlattices which are periodically juxtaposed with
two different building barriers. In general, one resonant domain in the former splits into two resonant
subdomains in the latter, and splitting occurs each time when two new barriers are added. The results
indicate that the resonance splitting is determined not only by the structure but also by the parameters
of building blocks.

PACS. 73.40.Gk Tunneling – 73.40.Kp III-V semiconductor-to-semiconductor contact, p-n junctions, and
heterojunctions

1 Introduction

Since the pioneering work done by Tsu and Esaki [1]
there has been a lot of research work on electronic trans-
port properties in semiconductor superlattices, especially
tunneling phenomena [2–11]. It is understood that it is
the resonant-tunneling process that leads to the negative
differential conductance. An interesting feature emerged
from the studies on multibarrier tunneling is that the
resonance in transmission exhibits some splitting effects.
Based on finite superlattices with periodic potential struc-
ture, Tsu and Esaki [1] first pointed out that for n-barrier
tunneling the splitting would be (n−1)-fold. Furthermore,
they remarked that the split resonance energies would
eventually approach the band model results for very large
n. Vassell, Lee, and Lockwood [2] developed a general the-
ory of multibarrier tunneling, which did not deal with
the resonance splitting effect. Experimental investigation
on the superlattice miniband position by means of hot-
electron injection was reported by Kuan, Tsui, and Choi
[3], in which the bias across the superlattice is always kept
at zero. Most recently, (n− 1)-fold splitting for n-barrier
tunneling was proved analytically by Liu and Stamp
[9,10] in the semiconductor superlattice which are mod-
eled by periodically arranging identical potential barriers
and wells with arbitrary profiles at zero bias.

However, there are still some basic questions unclear.
For example, what happens for resonance splitting in su-
perlattices which are periodically arranged with two dif-
ferent building barriers? Does (n− 1)-fold splitting for n-
barrier tunneling still hold for this case? In this paper, we
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Fig. 1. A semiconductor superlattice is periodically arranged
with two different building barriers. U1 and U2 are the heights
of adjacent barriers, b1 and b2 are the widths of them, w1 is
the width of the first well, respectively.

have confirmed that features of splitting strongly depend
not only on the structure but also on the parameters of
building barriers. We also make some discussion on tran-
sition between complete and incomplete transmission res-
onances, and transition between singlet and doublet res-
onances in triple-barrier structures, which are helpful to
understand resonance splitting features exhibited in finite
semiconductor superlattices.

2 Method

Consider electrons tunneling through a finite
GaAs/Ga1−xAlxAs (x is Al-concentration in the
Ga1−xAlxAs barrier regions) semiconductor superlattice
along the z direction as depicted in Figure 1, where
U1 and U2 are heights of two adjacent building barri-
ers, b1 and b2 are widths of them, respectively; w1 is
the width of the first quantum well. One-dimensional
Schrödinger equation in the framework of the effective



258 The European Physical Journal B

mass approximation is as follows,[
1

2m∗
d2

dz2
+ U(z)

]
Ψ(z) = EΨ(z), (1)

where U(z) is the potential of the semiconductor super-
lattice, E is the incident energy of an electron, and m∗ is
the effective mass of the incident electron.

In the incident and outgoing regions, the wave func-
tions of the particle are plane waves

Ψ(z) =

{
exp(ikzz) + r exp(−ikzz),
τ exp(ikzz),

(2)

where kz = (2m∗0E)1/2/~, ~(= h/2π) is the reduced
Planck constant, and m∗0 is the effective mass of electron
at the incident (outgoing) regions, which is taken to be
0.067me for GaAs case (me is the free electron mass). r
and τ are the reflection and transmission amplitudes, re-
spectively.

In the jth barrier region, the wave functions can read-
ily be expressed in terms of exponential functions (for
E < Uj) or expressed by plane waves (for E > Uj)

Ψ jb (z) =

{
Ajb exp(κjbz) +Bjb exp(−κjbz), E < Uj ,

Ajb exp(ikjbz) +Bjb exp(−ikjbz), E > Uj ,
(3)

where κjb = [2mj
b(Uj−E)]1/2/~, kjb = [2mj

b(E−Uj)]
1/2/~,

and Uj is the height of the jth barrier.
In the jth well region, the wave functions are still plane

wave functions

Ψ jw(z) = Ajw exp(ikjwz) +Bjw exp(−ikjwz), (4)

where kjw = [2mj
wE]1/2/~.

To meet current flux density conservation, the bound-
ary conditions (i.e. continuity of the wave function Ψ and
its appropriately normalized derivative (1/m∗)(dΨ/dz) at
the boundaries) are required. This leads to the following
relationship between the reflection amplitude r and trans-
mission amplitude τ[

1
r

]
=

1

2ikz

[
ikz 1
ikz −1

]
S(z)

×

[
1 1

(mn
b /m

∗
0)ikz −(mn

b /m
∗
0)ikz

] [
τ
0

]
,

(5)

where

S(z) = S1
b (b1)S1

w(w1)S2
b (b2)S2

w(w2) . . . Snb (bn), (6)

bj and wj are the widths of the jth barrier and jth well,

respectively; Sjb and Sjw correspond to the transfer matri-
ces for the jth barrier and jth well, respectively:

Sjb (bj) =

 cosh(κjbbj) − 1

κjb
sinh(κjbbj)

−
mj−1
w

mj
b

κjb sinh(κjbbj)
mj−1
w

mjb
κjb cosh(κjbbj)


(E < Uj) (7)

Energy (eV)

Fig. 2. Transmission versus energy for electrons tunneling
through from a single barrier (n = 1) to a finite superlattice of
ten identical barriers. The numbers indicated in each subplot
denote the total number of barriers in the corresponding struc-
ture. Uj = 300 meV, bj = 20 Å, wj = 50 Å, mj

b = 0.1002me,
mj
w = 0.067me, j = 1, 2, · · · .

Sjb (bj) =

 cos(kjbbj) − 1

kjb
sin(kjbbj)

mj−1
w

mj
b

kjb sin(kjbbj)
mj−1
w

mj
b
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(E > Uj) (8)

Sjw(wj) =

 cos(kjwwj) − 1

kjw
sin(kjwwj)

mj
b

mj
w

kjw sin(kjwwj)
mjb
mjw

kjw cos(kjwwj)

 .
(9)

Therefore, the transmission coefficient T for electrons tun-
neling through an n-barrier superlattice is given by

T (E) = 4[(S11 +
mn
b

m∗0
S22)2 + (

S21

kz
−
mn
b

m∗0
kzS12)2]

−1
,

(10)
where S11, S12, S21, and S22 are the elements of the S(z)
matrix.

3 Numerical results and discussion

Figure 2 presents the transmission coefficient as the func-
tion of the incident energy for electrons tunneling through
from a single barrier to finite periodic superlattices. The
barriers in the superlattices are identical (Uj = 300 meV
and bj = 20 Å). Throughout this paper we have set

mj
b = 0.1002me for barriers with height Uj = 300 meV,

mj
b = 0.0836me for barriers with height Uj = 150 meV,

wj = 50 Å and mj
w = 0.067me for all wells. The barrier
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Fig. 3. Transmission versus energy for electrons tunneling
through from single barriers (n = 1) to finite superlattices
which are periodically arranged with two different building
barriers. (a) U1 = 150 meV, b1 = 20 Å (for n = 1);
U2j−1 = 300 meV, U2j = 150 meV, bj = 20 Å, wj = 50 Å,
m2j−1
b = 0.1002me, m

2j
b = 0.0836me, m

j
w = 0.067me, j =

1, 2, · · · (for n ≥ 2). (b) U1 = 300 meV, b1 = 40 Å (for
n = 1); Uj = 300 meV, b2j−1 = 20 Å, b2j = 40 Å, wj = 50 Å,
mj
b = 0.1002me, m

j
w = 0.067me, j = 1, 2, · · · (for n ≥ 2).

height and the effective mass of electrons are determined
by the Al-concentration x in the Ga1−xAlxAs barrier re-
gions [12]. The range of the transmission coefficient is from
0 to 1 in each subplot of Figure 2. It is evident from Figure
2 that there is no resonance peak for the single barrier in
the considered energy region. Resonance peaks begin to
appear from n = 2, and each time when a new barrier is
added to the existing ones, the resonance splitting occurs.
For n-barrier tunneling, the splitting is (n − 1)-fold. The
results obtained here once again prove the generalization
of Tsu et al. [1] and Liu et al. [9,10]. One can also see that
with increasing the number of barriers in the superlattice,
resonant domains are broadened and located almost at the
center of peaks of the double-barrier structure.

The case what we are most interested in is that super-
lattices which are periodically juxtaposed with two differ-
ent building barriers. Figures 3a and 3b show the trans-
mission coefficient as the function of the incident energy
for electrons tunneling through from a single barrier to
finite superlattices, in which two different barriers are pe-
riodically arranged. Here two single barriers are chosen
to be different from that in Figure 2. The range of the
transmission coefficient for each subplot is from 0 to 1.
Figure 3a presents the results for the superlattices where
building barriers have different heights (U2j−1 = 300 meV,
U2j = 150 meV, j = 1, 2,· · · ), whereas the barrier width
and well width are set to be bj = 20 Å and wj = 50 Å,
respectively. Figure 3b shows the results for the super-

Energy (eV)

Fig. 4. Transmission versus energy for electrons tunneling
through from single barriers (n = 1) to finite superlattices
which are periodically arranged with two different building
barriers. (a) U1 = 150 meV, b1 = 40 Å (for n = 1); U2j−1 =
300 meV, U2j = 150 meV, b2j−1 = 20 Å, b2j = 40 Å, wj =
50 Å, m2j−1

b = 0.1002me, m
2j
b = 0.0836me , m

j
w = 0.067me,

j = 1, 2, · · · (for n ≥ 2). (b) U1 = 150 meV, b1 = 30 Å (for
n = 1); U2j−1 = 300 meV, U2j = 150 meV, b2j−1 = 20 Å,
b2j = 30 Å, wj = 50 Å, m2j−1

b = 0.1002me , m
2j
b = 0.0836me,

mj
w = 0.067me, j = 1, 2, · · · (for n ≥ 2).

lattices in which building barriers have different widths
(b2j−1 = 20 Å, b2j = 40 Å, j = 1, 2, · · · ) whereas the bar-
rier height and the well width are set to be Uj = 300 meV
and wj = 50 Å, respectively. Comparing Figure 3 with
Figure 2, it is evident that one resonant domain in the
periodic superlattice which consists of identical barriers
splits into two resonant subdomains in the superlattice
which is periodically juxtaposed with two different barri-
ers. In each resonant subdomain there is smaller number of
resonance peaks. The total number of peaks is not always
equal to (n−1) for n-barrier tunneling. Moreover, the res-
onance splitting occurs each time when two new barriers
are added to the existing ones. Here we would like to point
out that the total number of resonance peaks in each res-
onant subdomain in the low energy region is exactly same
as that in the high energy region. In our plots some peaks
in the low energy region are too close to discern clearly.
In addition, although to some extent the feature of the
resonance splitting displayed in Figures 3a and 3b is simi-
lar, there still exist some discrepancies between these two
cases. The most obvious discrepancy is that in the super-
lattices where two building barriers have different widths
and same heights, resonance peaks becomes sharper and
the width of each resonant subdomain is dramatically nar-
rowed, especially in the low incident energy region due to
larger width of the whole structure.
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In Figure 3 the two building barriers have different
widths and same heights or have different heights and
same widths. For a general case, i.e., two building bar-
riers are different from each other on both width and
height, do the above stated splitting features still exist?
Figures 4a and 4b show the transmission coefficient as
the function of the incident energy for electrons tunneling
through from single barrier structures to finite superlat-
tices. The parameters of barriers in Figure 4a are set to
be b2j−1 = 20 Å, U2j−1 = 300 meV, b2j = 40 Å, and
U2j = 150 meV (j = 1, 2, · · · ). In this case, we carefully
choose barrier width and height in order to obtain unity
peak-value for first resonance peak in the double-barrier
structure. The parameters of barriers in Figure 4b are cho-
sen to be b2j−1 = 20 Å, U2j−1 = 300 meV, b2j = 30 Å,
U2j = 150 meV (j = 1, 2, · · · ). From Figure 4a one can
see that for first resonant domain, the resonance splitting
resembles to that of superlattices of identical building bar-
riers, i.e., (n− 1)-fold splitting for n-barrier tunneling. A
noticeable result is that for the structures with even num-
ber of building blocks, the middle peak in the low energy
region is less than unity (n = 6, 8, 10). However, for the
second larger resonant domain in the high incident energy,
splitting features resemble to those exhibited in Figure 3
where the structures are obtained by periodically arrang-
ing two different barriers. For superlattices of arbitrary
building barriers shown in Figure 4b, one can see that the
splitting features resemble to those displayed in Figure 3.

How can we understand these interesting resonance
splitting features displayed in periodic superlattices? The
resonance splitting is driven by its energy-band structure
of the corresponding superlattice, which is determined not
only by the structure but also by the parameters of build-
ing barriers. As we know, eigenlevels of the independent
quantum wells are split due to the coupling between the
wells via tunneling through the barriers. Consequently,
these split levels redistribute themselves in groups around
their unperturbed positions and form quasibands. As the
number of periods tends to infinity, the energy band is
formed. For a finite superlattice, there is no continuous en-
ergy band. In each band, only some discrete energy could
be expected. Moreover, one band which consists of several
separated quasibound energy levels in the superlattice of
identical barriers splits into two subbands in the super-
lattice arranged with two different barrier. Each subband
includes smaller number of quasibound energy levels. The
necessary condition for the resonant tunneling to occur
is that the energy of the incident energy falls completely
inside the allowed bands. Therefore, in the transmission
spectrum one can naturally see above stated resonance
splitting. The positions of the resonance peaks predict
the quasibound energy levels of the interacting multiwell
structures.

Finally, we make some discussion on two interesting
types of resonance transitions existed in triple-barrier
structures, which are helpful to further understand res-
onance splitting features shown in Figures 2 to 4. First
of all, an important fact to note is that the physics of
resonant tunneling in the triple-barrier structure is much

Energy (eV)

Fig. 5. Transmission versus energy for electrons tunneling
through triple-barrier structures. w1 = w2 = 50 Å. In all of
plots,mj

b = 0.0836me, 0.1002me , 0.10345me correspond to bar-
riers with height Uj = 150 meV, 300 meV, 337.5 meV, respec-
tively. (a) b1 = b2 = b3 = 20 Å, U1 = U3 = 150 meV. The solid,
dot-dashed, and dashed lines correspond to U2 = 150 meV,
300 meV, 337.5 meV, respectively. (b) U1 = U2 = U3 =
300 meV, b1 = b3 = 20 Å. The solid, dot-dashed, and dashed
lines correspond to b2 = 40 Å, 60 Å, 80 Å, respectively.

more than an extension of the results of the double barrier
case, since the former involves the coupling of quasibound
states between two adjacent quantum wells. From Figures
3 and 4 it is evident that there exists a transition of trans-
mission resonances for electrons tunneling through from
simple asymmetric double-barrier structure to compara-
tively complex structures of unidentical barriers, such as
triple-barrier structures. Complete resonant tunneling can
occur in the latter case as in structures of identical bar-
riers. However, in the triple-barrier case, if the difference
between adjacent barriers is further enlarged, one can still
see the reduction of transmission peaks.

Figure 5a shows the numerical results of the transmis-
sion coefficient versus incident energy for electrons tun-
neling through three triple-barrier structures. The height
of the middle barrier is different whereas the widths of
three barriers are set to be same and equal to 20Å.
The solid, dot-dashed, and dashed lines correspond to
U2 = 150 meV, 300 meV, 337.5 meV, respectively. Other
parameters are chosen to be U1 = U3 = 150 meV. Fig-
ure 5b displays the results for electrons tunneling through
three triple-barrier structures in which the middle bar-
rier with different widths, whereas the width of left bar-
rier and that of the right one are set to be same and
equal to 20 Å. The barrier height is chosen to be same as
(U1 = U2 = U3 = 300 meV). The solid, dot-dashed, and
dashed lines correspond to the cases with b2 = 40 Å, 60 Å,
80 Å, respectively. There are two distinct features which
should be noticed. One is that resonance peaks drop off
with enlarging the difference between the middle barrier
and side ones, especially for the cases in Figure 5b where
the first peak drop drastically (see the dashed line). It is
too low to see clearly. Here we would like to point out
that in Figure 5b two resonance peaks in the low incident
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energy region (see the solid line) is too close to discern.
If we enlarge them, two separated resonant peaks can be
clearly seen. In the triple-barrier case of unidentical barri-
ers, whether complete resonant tunneling can occur or not
strongly depends on the degrees of discrepancy between
adjacent barriers. This is one type of transitions between
complete and incomplete transmission resonances existed
in triple-barrier structures. The other is that there ex-
ists transitions between doublet resonances (i.e., tunneling
with doublet) and singlet resonances (i.e., tunneling with
singlet). When enlarging the difference between building
blocks in the triple-barrier case, tunneling with doublet
turns into tunneling with singlet. The origin of the exis-
tence of these two types of resonance transitions is due to
the complex coupling between two quantum wells within
barriers.

4 Conclusions

The resonance splitting in semiconductor superlattices
are determined not only by the structure but also by
the parameters of building barriers. The mechanism
of splitting is driven by its energy-band structure
of the corresponding superlattice. Two kinds of pe-
riodic superlattices are examined. One is a periodic
arrangement with identical barriers while the other
is periodically juxtaposed with two different build-
ing barriers. In general, one resonant domain in the
former splits into two resonant subdomains in the
latter. For n-barrier tunneling, splitting is not always
(n−1)-fold. There exist two interesting and complex types

of resonance transitions which are helpful to understand
tunneling properties in multibarrier structures. One is be-
tween complete and incomplete transmission resonances.
The other is between singlet and doublet resonances.
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edge partial support from the High Technology Research and
Development Program of P. R. China.
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